RADIATION TESTING OF A SMALL LABORATORY ANIMAL PHANTOM CREATED BY FUSED FILAMENT FABRICATION
https://doi.org/10.26583/vestnik.2023.282
EDN: FURJNQ
Abstract
In order to validate new radiotherapeutic techniques, a large number of studies using ionizing radiation are required. Such studies are often carried out using small laboratory animals, such as mice and rats, that is cause the ethical questions of the international scientific community. In this regard, the application of artificial animal models is relevant. It is allow to reduce the number of animals used. In previous studies, homogeneous monolithic test objects were fabricated and dosimetric tests were performed. 3D-printing parameters and materials were determined for the most accurate imitation of biological tissues. This study proposes to use fused filament fabrication techniques for design and creation of heterogeneous objects from different materials, which will allow the fabrication of phantoms with high accuracy in a short period of time. In this work, the male rat dosimetric phantom was designed and created. Its tomographic and dosimetric tests were carried out. The possibility of manufacturing dosimetric phantoms of small laboratory animals by fused filament fabrication methods was shown
Keywords
About the Authors
A. A. GrigorievaRussian Federation
A. A. Bulavskaya
Russian Federation
E. A. Bushmina
Russian Federation
V. A. Kuyvalaynen
Russian Federation
I. A. Miloichikova
Russian Federation
S. G. Stuchebrov
Russian Federation
References
1. Kaprin A.D., Starinskij V.V., Shahazadova A.O. Zlokachestvennye novoobrazovaniya v 2019 godu [Malignant neoplasms in 2019]. M.: MNIOI im. P.A. Gercena, filial FGBU «NMIC radiologii» Minzdrava Rossii Publ., 2020. 252 p.
2. Gerber D.E., Chan T.A. Recent advances in radiation therapy. American family physician, 2008. Vol. 78. No. 11. Pp. 1254–1262.
3. DeWerd L.A. The phantoms of medical and health physics. Berlin: Springer, 2014. 290 p.
4. Mouse Phantom. Pre-clinical CT Phantoms. Available at: https://www.leedstestobjects.com/index. php/phantom/mousephantom/ (accessed 19.06.2023).
5. Tillner F., Thute P., Löck S., Dietrich A., Fur-sov A., Haase R., Enghardt W. Precise image-guided irradiation of small animals: a flexible non-profit platform. Physics in Medicine & Biology, 2016. Vol. 61. No. 8. P. 3084.
6. Canessa E. Fonda C., Zennaro M., Deadline N. Low-cost 3D printing for science, education and sustainable development. Low-Cost 3D Printing, 2013. Vol. 11. No. 1.
7. Stuchebrov S.G. Bulavskaya, A.A., Cherepennikov Y.M., Grigorieva A.A., Miloichikova I.A. Development of the patient-specific phantom of the human arm part using 3D printing. Radiotherapy and Oncology, 2021. Vol. 161. Pp. 1309–1310.
8. Bulavskaya A., Cherepennikov Y., Gavrikov B., Grigorieva A., Grigoriev E., Miloichikova I., Stucheb-rov S. Applicability of poly (styrene–butadiene–styrene) for three-dimensional printing of tissue-equivalent samples. 3D Printing and Additive Manufacturing, 2022. Vol. 9. No.5. Pp. 399–404.
9. 3D Slicer image computing platform. Available at: https://www.slicer.org/ (accessed 05.07.2023).
10. Nozdrachev A.D., Polyakov E.L. Anatomiya krysy (laboratornye zhivotnye) [Anatomy of a rat (laboratory animals)]. Saint Petersburg: Lan' Publ, 2001. 159 p.
11. Autodesk Fusion 360. Available at: https:// www.autodesk.com/products/fusion-360/overview?term =1- YEAR&tab=subscription (accessed 05.07.2023).
12. Gafchromic (EBT2, EBT3, HD-810 et al.). Available at: https://gafchromic.ru/catalog.php (accessed 05.07.2023).
13. Marroquin E.Y.L., Herrera Gonzalez J.A., Camacho Lopez M.A., Barajas J.E.V., García‐Gar-duño O.A. Evaluation of the uncertainty in an EBT3 film dosimetry system utilizing net optical density . Journal of applied clinical medical physics, 2016. Vol. 17. No. 5. Pp. 466–481.
14. RadiAnt DICOM Viewer. Available at: https:// www.radiantviewer.com/ru/ (accessed: 05.07.2023).
15. DenOtter T.D., Schubert J. Hounsfield Unit. StatPearls Publishing LLC, Treasure Island (FL), 2019.
16. Grigorieva A.A. Bulavskaya A.A., Miloichikova I.A., Cherepennikov Y.M., Stuchebrov S.G. Determination of the test-samples electron density via dual energy computer tomography. Journal of Physics: Conference Series. IOP Publishing, 2021. Vol. 1843. No. 1. Pp. 012021.
17. Miloichikova I., Bulavskaya A., Cherepennikov Y., Gargioni E., Grigorieva A., Stuchebrov S., Weg¬ner M. Development of a digital three-dimensional rodent model for production of small laboratory animal phantoms European journal of nuclear medicine and molecular imaging, 2021. Vol. 48. P. S577.
18. Stuchebrov S.G., Bulavskaya A.A., Cherepennikov Y.M., Grigorieva A.A., Miloichikova I.A., Gar¬gioni E. Making a copy of conventional anthropomorphic phantom section by 3D printing. European Journal of Nuclear Medicine and Molecular Imaging, 2020. Vol. 47. Pp. 313–314.
19. Original Prusa I3 MK3. Available at: https://educube.ru/products/3d-printer-original-prusa-i3-mk3-sobrannyy/ (accessed: 05.07.2023).
20. Siemens Somatom Emotion 6. Available at: https://radio-med.ru/makers/kt/4-sreznyie-kt/kompyute¬rnyy-tomograf-siemens-somatom-emotion-6/ (accessed: 05.07.2023).
21. Theratron Equinox 80. Available at: http://www.theratronics.ca/product_equinox.html (accessed: 05.07.2023).
Review
For citations:
Grigorieva A.A., Bulavskaya A.A., Bushmina E.A., Kuyvalaynen V.A., Miloichikova I.A., Stuchebrov S.G. RADIATION TESTING OF A SMALL LABORATORY ANIMAL PHANTOM CREATED BY FUSED FILAMENT FABRICATION. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2023;12(5):268-275. (In Russ.) https://doi.org/10.26583/vestnik.2023.282. EDN: FURJNQ