Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

SOME UNSTEADY TWO-DIMENSIONAL GAS FLOWS, DETERMINED USING TRIGONOMETRIC SERIES

https://doi.org/10.26583/vestnik.2023.295

Abstract

The work uses a technique for representing solutions to a system of nonlinear equations of motion in the form of infinite trigonometric series of two spatial variables. The coefficients of the series are the desired functions of time, for which an infinite system of ordinary differential equations is written. The initial data are specified in the form of finite trigonometric sums. Approximate solutions to the stated Cauchy problems are also constructed in the form of finite segments of trigonometric series. For various initial data, the work considers specific nonstationary two-dimensional gas flows that are periodic in the spatial variables x, y and analyzes their properties.

About the Authors

S. P. Bautin
Snezhinsk Institute of Physics and Technology, National Research Nuclear University MEPhI
Russian Federation


O. A. Karelina
Snezhinsk Institute of Physics and Technology, National Research Nuclear University MEPhI; Federal State Unitary Enterprise «Russian Federal Nuclear Center – Zababakhin Al – Russia Research Institute of technical Physics»
Russian Federation


A. G. Obukhov
Tyumen Industrial University
Russian Federation


References

1. Bautin S.P., Zamyslov V.E., Skachkov P.P. Matematicheskoe modelirovanie trigonometricheskimi ryadami odnomernyh techenij vyazkogo teploprovodnogo gaza. [Mathematical modeling of one-dimensional flows of viscous heat-conducting gas by trigonometric series]. Novosibirsk, Science Publ., Ekaterinburg. UrGUPS Publ., 2014.

2. Bautin S.P., Zamyslov V.E. Skhodimosti besko-nechnyh trigonometricheskih ryadov, reshayushchih uravnenie Byurgersa . [Convergence of infinite trigonometric series solving the Burgers equation]. Snezhinsk, SFTI NIYAU MEPhI Publ., 2022.

3. Bautin S.P., Zamyslov V.E. Predstavlenie reshenij uravneniya Byurgersa trigonometricheskimi ryadami. [Representation of solutions to the Burgers equation by trigonometric series]. Vestnik NIYaU MIFI, 2022. Vol. 11. No. 4. Pp. 305–318.

4. Bautin S.P., Karelina O.A., Obukhov A.G. Nestacionarnye dvumernye periodicheskie resheniya uravnenij dvizheniya. [Nonstationary two-dimensional periodic solutions of equations of motion]. Snezhinsk, SFTI NRNU MEPhI Publ., 2023.

5. Bautin S.P., Karelina O.A., Obukhov A.G. Predstavlenie reshenij sistemy uravnenij dvizheniya s pomoshch'yu trigonometricheskih ryadov. [Representation of solutions to a system of equations of motion using trigonometric series]. Vestnik NIYaU MIFI, 2023. Vol. 12. No. 1. Pp. 39–51 (in Russian).

6. Bautin S.P. Harakteristicheskaya zadacha Koshi i ee prilozheniya v gazovoj dinamike. [The characteristic Cauchy problem and its applications in gas dynamics]. Novosibirsk, Nauka Publ., 2009.


Review

For citations:


Bautin S.P., Karelina O.A., Obukhov A.G. SOME UNSTEADY TWO-DIMENSIONAL GAS FLOWS, DETERMINED USING TRIGONOMETRIC SERIES. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2023;12(4):223-232. (In Russ.) https://doi.org/10.26583/vestnik.2023.295

Views: 99


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)