GENERATIVE ALGORITHMS IN INFORMATION WARFARE
https://doi.org/10.26583/vestnik.2024.352
EDN: STQHGE
Abstract
The development of information and communication technologies has led to a significant change in the life of society in the field of information consumption formation. With the spread of the Internet, various means of information dissemination began to appear, such as social networks that support text, visual and audio formats. The society has the opportunity to publish and create content, which in turn affects the information environment, which has already become the arena of information confrontation not only between states and organizations, but also individuals. Methods of automatic content generation based on generative algorithms that can create objects of such formats as images, video, audio and text play a special role in the information confrontation today. The article discusses the possibilities of using generative algorithms in information warfare. The main difficulty in substantiating the totality of topics of generative algorithms and information warfare is the novelty of such a tool as a generative adversarial network, the lack of a regulatory framework in the Russian Federation, as well as confirmed cases of the use of generative algorithms in information warfare.
About the Author
A. D. VuykovichRussian Federation
References
1. Suleymanova Sh.S., Nazarova E.A. Informatsionniye voyni: istoria i sovremennost’ [Information wars: history and modernity]. Moscow, International Publishing Center «Ethnosocium» Publ., 2017. Pp. 4–46.
2. Romashkina N.P., Kovalev V.I., Topychkanov P.V., Evseev V.V., Idayatov A.K. Ugrozy informatsionnoi bezopasnosti v krizisah i ugrozah XXI veka [Threats to information security in crises and conflicts of the XXI century]. Moscow, IMEMO RAS, 2015, Pp. 21–30.
3. Goodfellow I.J., Pouget-Abadie J., Mirza M., Xu B., Warde-Farley D., Ozair S., Courville A., Ben¬gio Y. Generative Adversarial Nets 2014. Available at: https://arxiv.org/pdf/1406.2661.pdf (accessed: 01.04.2022).
4. Goodfellow I., Bengio Y., Courville A. Deep learning. Massachusetts Institute of Technology, 2016, Pp. 700.
5. Vuykovich A.D. Generativnyye algoritmy v informatsionnyh voinah [Generative algorithms in information wars]. Sbornik tezisov dokladov IX Mezhdunarodnoj molodezhnoj nauchnoj shkoly-konferencii «Sovremennye problemy fiziki i tekhno-logij», 26–28 aprelya 2022g. [Collection of abstracts of the IX International Youth Scientific School-Conference «Modern Problems of Physics and Technologies», April 26–28, 2022]. Moscow, NIYAU MIFI Publ., 2022. Pp. 247–250 (in Russian).
6. Isola P., Zhu J.Y., Zhou T., Efros A.A. Image-to-Image Translation with Conditional Adversarial Networks 2018. Available at: https://arxiv.org/pdf/ 1611.07004.pdf (accessed: 02.04.2022).
7. Zhang H., Xu T., Li H., Zhang S., Wang X., Huang X., Metaxas D. StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 2017. Available at: https://arxiv.org/pdf/ 1612.03242.pdf (accessed: 02.04.2022).
8. Brownlee J. 18 Impressive Applications of Generative Adversarial Networks (GANs). Machine Learning Mastery, 2019. Available at: https://machinelearnin gmastery.com/impressive-applications-of-generative-adversarial-networks / (accessed 03.04.2022).
9. Greenemeier L. When Will Computers Have Common Sense? Ask Facebook . Scientific American, 2016. Available at: https://www.scientificamerican. com/article/when-will-computers-have-common-sense-ask-facebook/ (accessed: 19.03.2022).
10. Hossam M., Le T., Papasimeon M., Huynh V., Phung D. Text Generation with Deep Variational GAN, 2021. Available at: https://arxiv.org/pdf/2104.13488.pdf (accessed: 04.04.2022).
11. Alencar R. Audio Generation with GANs. Medium, 2019. Available at: https://medium.com/neuronio/ audio-generation-with-gans-428bc2de5a89 (accessed: 04.04.2022).
Review
For citations:
Vuykovich A.D. GENERATIVE ALGORITHMS IN INFORMATION WARFARE. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2024;13(4):263-272. (In Russ.) https://doi.org/10.26583/vestnik.2024.352. EDN: STQHGE