Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

Analytical properties of the Green's function of the equation of linear internal gravity waves in stratified media with model distributions of buoyancy frequency

https://doi.org/10.26583/vestnik.2025.6.1

EDN: BHVPLV

Abstract

This paper presents a theoretical study of the analytical properties of the Green's function for the internal gravity wave equation for two model density distributions of a stratified, inviscid medium. Integral representations of the solutions are obtained in a linear formulation using the Fourier transform. The selection of a single-valued form for the resulting analytical solutions is discussed. The resulting analytical constructs, using integral convolution, enable the study of wave fields generated by arbitrary nonlocal and nonstationary disturbance sources in real natural stratified media. The obtained asymptotic results enable the investigation of wave disturbances that can be recorded using radar and optical systems. They provide information not only about the sources of generation but also about the characteristics of the marine environment. This is important, among other things, for studying the response of the marine environment to various hydrodynamic disturbances and improving methods for remote sensing of the sea surface. Initial and boundary conditions for specific disturbance sources should be determined from the results of direct numerical modeling of the complete system of hydrodynamic equations or from purely evaluative semi-empirical considerations, allowing for the adequate approximation of real non-local disturbance sources by a certain system of model sources. The resulting analytical solutions enable the calculation of the fundamental amplitude-phase characteristics of the excited far fields of internal gravity waves under certain generation conditions, and, furthermore, the qualitative analysis of the resulting solutions, which is important for the correct formulation of more complex mathematical models of the wave dynamics of real natural stratified media. These model solutions subsequently enable the derivement of representations of wave fields taking into account the actual variability and non-stationarity of such media.

About the Author

V. V. Bulatov
Ishlinsky Institute for Problems in Mechanics RAS
Russian Federation

Leading Researcher



References

1. Bulatov V.V., Vladimirov I.Yu. Dinamika poverhnostnih I vnutrennih gravitacionnih voln v gidrofizicheskih sredah [Dynamics of surface and internal gravity waves in hydrophysical media]. Moscow, Fizmatlit Publ., 2025. 320 p. (in Russian).

2. Morozov E.G. Oceanic internal tides. Observations, analysis and modeling. Berlin, Springer, 2018. 317 p.

3. Morozov E.G., Tarakanov R.Yu., Frey D.I. Bottom gravity currents and overflow in deep channels of the Atlantic ocean. Springer Nature Switzerland AG, 2021. 483 p.

4. Ozsoy E. Geophysical fluid dynamics II. Stratified rotating fluid dynamics of the atmosphere-ocean. Springer Textbook in Earth Sciences. Geography and Environment. Switzerland AG Cham, Springer Nature, 2021. 323 p.

5. Pedlosky J. Waves in the ocean and atmosphere: introduction to wave dynamics. Berlin-Heildelberg, Springer, 2010. 260 p.

6. Sutherland B.R. Internal gravity waves. Cambridge, Cambridge University Press, 2010. 394 p.

7. Velarde M. G., Tarakanov R.Yu., Marchenko A.V. (eds.). The ocean in motion. Springer Oceanography. Springer International Publishing AG, 2018. 625 p.

8. Voelker G.S., Myers P. G., Walter M., Sutherland B. R. Generation of oceanic internal gravity waves by a cyclonic surface stress disturbance. Dynamics of Atmospheres and Oceans, 2019. Vol.86. Pp.116-133

9. Talipova T., Pelinovsky E., Didenkulova E. Internal tsunami waves in a stratified ocean induced by explosive volcano eruption: a parametric source. Physics Fluids, 2024. Vol. 36. P.042110

10. Talipova T., Pelinovsky E., Didenkulova E. Internal waves generated by explosive eruptions of underwater volcanoes and their effect on the sea surface. Natural Hazards, 2025. Vol.121. Pp. 661–675.

11. Kharif C., Pelinovsky E., Slunyaev A. Rogue waves in the ocean. Berlin, Springer, 2009. 260 p.

12. Adcroft A., Campin J.-M. MITgsm user manual. Cambridge: MIT, 2011. 455 p.

13. Chai J., Wang Z., Yang Z., Wang Z. Investigation of internal wave wakes generated by a submerged body in a stratified flow. Ocean Engineering. 2022. Vol.266. P.112840

14. Wang J., Wang, S., Chen X., Wang W., Xu Y. Three-dimensional evolution of internal waves rejected from a submarine seamount. Physics Fluids, 2017. Vol.29. P.106601

15. Gnevyshev V., Badulin S. Wave patterns of gravity–capillary waves from moving localized sources. Fluids. 2020. Vol.5. P.219.

16. Gervais A.D., Swaters G.E., Sutherland B.R. Transmission and reflection of three-dimensional Boussinesq internal gravity wave packets in nonuniform retrograde shear flow. Physical Review Fluids, 2022. Vol.7. Pр. 114802

17. Meunier P., Dizиs S., Redekopp L., Spedding G. Internal waves generated by a stratified wake: experiment and theory. Journal of Fluid Mechanics, 2018. Vol.846. Pp.752-788

18. Broutman D., Brandt L., Rottman J., Taylor C. A WKB derivation for internal waves generated by a horizontally moving body in a thermocline. Wave Motion. 2021. Vol. 105. Pр. 102759

19. Bulatov V.V., Vladimirov I.Yu. Analiticheskie svojstva dispersionnih sootnoshenij uravnenija vnutrennih gravitacionnih voln s modelnimi i proizvolnimi raspredelenijami chastoti plavuchesti [Analytical properties of dispersion relations of the internal gravity wave equation with model and arbitrary buoyancy frequency distributions].Vestnik NIYaU MIFI, 2023. Vol.12(1). Pp.3-8 (in Russian).

20. Bulatov V.V. Internal gravity waves excited by motionless perturbation sources. Fluid Dynamics. 2023. Vol.58. Suppl.2. Pp. S240-S252.

21. Bulatov V.V. Asymptotics of far fields of internal gravity waves caused by localized sources in an infinite deep stratified medium. Fluid Dynamics. 2023. Vol.58. Suppl.2. Pp. S263-273.

22. Landau L.D., Livshitz E.M. Teoreticheskaja fizika. Tom 7. Teorija polja [Theoretical physics. Vol.7. Field theory]. Moscow, Nauka Publ., 1988. 512 p. (in Russian).

23. Abramowitz M, Stegun I. Handbook of mathematical functions with formulas, graphs, and mathematical tables. USA Department of Commerce: National Bureau of Standards. Applied Mathematics Series 55. Tenth Printing. 1972. 1064 p.

24. Nikiforov A.F., Uvarov V.V. Specialnije funksii matematicheskoj fiziki [Special functions of mathematical physics]. Moscow, Intellect Publ., 2008. 344 p.


Supplementary files

Review

For citations:


Bulatov V.V. Analytical properties of the Green's function of the equation of linear internal gravity waves in stratified media with model distributions of buoyancy frequency. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2025;14(6):467-477. (In Russ.) https://doi.org/10.26583/vestnik.2025.6.1. EDN: BHVPLV

Views: 25


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)