Poly-energy implantation of helium ions into silicon
https://doi.org/10.26583/vestnik.2025.5.8
EDN: YATPCV
Abstract
The method of polyenergetic implantation of helium ions into single-crystal silicon was investigated in order to form buried layers of high porosity, promising for creating structures of the "silicon-on-insulator" type. The creation of buried porous layers by implantation of helium ions and subsequent high-temperature annealing is very promising for further obtaining silicon-on-nothing and silicon-on-insulator structures. However, the porosity of the buried layers is limited by the blistering and flecking phenomena, which cause mechanical damage to the surface silicon at high implantation doses. The purpose of this work is to increase the helium ion implantation dose and, accordingly, increase the porosity of the buried layer after high-temperature annealing without deteriorating the quality of the surface silicon layer. We present a method consisting in creating an extended concentration profile with a concentration of 4∙1021 He+/cm3 with sequential implantation with energies of 70 and 35 keV. High-temperature annealing at 150°C/30 min leads to the formation of huge pores with a diameter of approximately 130 nm near the initial concentration maximum for the energy of 70 keV. It is concluded that the polyenergetic implantation method allows a significant increase in the implanted dose without the occurrence of surface defects, and the regulation of the annealing temperature opens up possibilities for controlling the distribution and size of pores in the buried layer.
Keywords
About the Authors
S. G. ShemardovRussian Federation
A. V. Beklemisheva
Russian Federation
P. A. Alexandrov
Russian Federation
A. L. Vasiliev
Russian Federation
V. N. Beklemishev
Russian Federation
References
1. Raineri V., Fallica P.G., Percolla G. Gettering of metals by voids in silicon. Journal of Applied Physics, 1995. Vol.78. Iss. 6. рр. 3727–3735.
2. Griffioen C. C., Evans J. H., de Jong P. C. The annealing of helium-induced cavities in silicon and the inhibiting role of oxygen. Nuclear Instruments and Methods in Physics Research, 1987, Vol.27. Iss 3. pp. 360-363.
3. Evans J. H. Mechanisms of void coarsening in helium implanted silicon. Nuclear Instruments and Methods in Physics Research, 2002. Vol.196 (1-2), pp. 125-134.
4. Hasanuzzaman M., Haddara Y. M., Knights A.P. A mathematical model for void evolution in silicon by helium implantation and subsequent annealing process. Journal of Applied Physics, 2012. Vol. 112 . no.6. pp. 064302- 064312. Doi: 10.1063/1.4751437
5. Alexandrov P.A., Emelianenko O.E., Shemardov S.G., Khmelenin D.N., Vasilyev A.L. Problemy vysokodoznoj ionnoj implantacii ionov geliya v kremnij [Problems of High-Dose Ion Implantation of Helium Ions into Silicon]. Kristallografiya, 2024. vol.69. no.3. pp. 494-504. Doi: 10.31857/S0023476124030155 (in Russian)
6. Lockwood D. J., Labbé H. J., Siegele R., Haugen H. K. Visible photoluminescence from helium-ion implanted carbon in silicon. Applied Physics Letters, 1995. Vol.78 (10), рр. 6185-6188A.
7. Ogura A. Formation of patterned buried insulating layer in Si substrates by Не+ implantation and annealing in oxidation atmosphere. Applied Physics Letters, 2003. Vol.82(25), рр.4480–4482. DOI:10.1063/1.1586783
8. Beaufort M.F., Pizzagalli L., Gandy A.S. Solid-phase epitaxial regrowth of amorphous silicon containing helium bubbles. Journal of Applied Physics, 2008. Vol.104. iss.9. Art. number 094905. DOI:10.1063/1.3009383
9. Vishnyakov V.M., Donnelly S.E., Carter G. The use of cavities for gettering in silicon microelectronic devices. Journal of Applied Physics, 2003. Vol. 94. рр.422-426.
Review
For citations:
Shemardov S.G., Beklemisheva A.V., Alexandrov P.A., Vasiliev A.L., Beklemishev V.N. Poly-energy implantation of helium ions into silicon. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2025;14(5):452-456. (In Russ.) https://doi.org/10.26583/vestnik.2025.5.8. EDN: YATPCV
 
                     
         
             
  Email this article
            Email this article