Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

High-dose implantation of low-energy helium ions

https://doi.org/10.26583/vestnik.2025.6.10

EDN: RXPWRH

Abstract

The issue of high-dose implantation of low-energy helium ions (24 keV) is being considered. In this case, the average projected range is at a depth of 20-30 nm from the sample surface. Implantation of helium ions into silicon is very attractive for creating buried porous layers in silicon during subsequent high-temperature annealing. A natural way to increase the porosity of the buried layer is to increase the implantation dose. However, this is hindered by radiation damage to the surface silicon (blistering and flecking), which makes it impossible to create electronic devices in the latter. As the implantation energy decreases, the implantation profile of embedded helium ions approaches the surface of the substrate, the proportion of vacancies and loosely bound near-surface atoms increases, affecting the course of diffusion processes, and the strength characteristics of the surface layer, including the porous layer, significantly change. It becomes possible to implant significantly higher doses of helium ions without mechanical damage to the surface silicon. The paper presents the results of a study of a buried porous layer after implantation of a dose of 1.75∙1017 He+/cm2 at an energy of 24 keV and subsequent high-temperature annealing at a temperature of 1150 ° C for 30 minutes. Huge pores with a diameter of 120-170 nm appear in the area of the initial concentration maximum. The porosity of this layer reaches 50%.

About the Authors

S. G. Shemardov
National Research Center “Kurchatov Institute”
Russian Federation


A. V. Beklemisheva
National Research Center “Kurchatov Institute”
Russian Federation


P. A. Alexandrov
National Research Center “Kurchatov Institute”
Russian Federation


A. L. Vasiliev
National Research Center “Kurchatov Institute”; Moscow Institute of Physics and Technology (National Research University)
Russian Federation


V. N. Beklemishev
National Research Center “Kurchatov Institute”; State University of Management
Russian Federation


References

1. Alexandrov P.A., Emelianenko O.E., Shemardov S.G., Khmelenin D.N., Vasilyev A.L. Problemy vysokodoznoj ionnoj implantacii ionov geliya v kremnij [Problems of High-Dose Ion Implantation of Helium Ions into Silicon]. Kristallografiya, 2024. Vol.69. no.3. pp. 494-504. DOI: 10.31857/S0023476124030155 (in Russian)

2. Siegele R., Weatherly G.C., Haugen H.K. Visible photoluminescence from helium-ion implanted carbon in siliconю Applied Physics Letters, 1995. Vol.78 (10), Pp.6185-6188. DOI: 10.1063/1.115275

3. Chesnokov Yu. M., Aleksandrov P. A., Belova N. E. Issledovanie mikrostruktury sloev kremniya-na-sapfire posle implantacii He+ i posleduyushchej termoobrabotki [Study of the microstructure of silicon-on-sapphire layers after He+ implantation and subsequent heat treatment]. Crystallography, 2017, Vol. 62 (4), pp. 613-617 (in Russian)

4. Aleksandrov P. A., Demakov K. D., Shemarov S. G., Belova N. E. Primenenie ionnoj implantacii dlya modifikacii epitaksial'nyh sistem kremnij-na-sapfire, ih struktura i svojstva [Application of ion implantation for modification of epitaxial silicon-on-sapphire systems, their structure and properties]. Poverhnost'. Rentgenovskie, sinhrotronnye i nejtronnye issledovaniya, 2017, Vol.8. pp.5-16. (in Russian)

5. Shemardov S. G., Beklemishev V. N.,. Aleksandrov P. A, et al. [Polyenergetic implantation of helium ions into silicon]. Vestnik NIYaU MIFI, 2025. Vol. 14, No. 5. Pp. 452-456. (in Russian)

6. Rudenko T.E., Nazarov A.N., Lysenko V.S.. The advancement of silicon-on-insulator (SOI) devices and their basic properties. Semiconductor Physics, Quantum Electronics & Optoelectronics, 2020. Vol. 23, № 3. Pp. 227-252.

7. Griffioen C. C., Evans J. H., de Jong P. C. The annealing of helium-induced cavities in silicon and the inhibiting role of oxygen. Nuclear Instruments and Methods in Physics Research, 1987. Vol.27(3), Pp. 360-363.

8. Beaufort M.F., Pizzagalli L., Gandy A.S. Solid-phase epitaxial regrowth of amorphous silicon containing helium bubbles. Journal of Applied Physics, 2008, Vol. 104. Art. number 094905. DOI: 10.1063/1.3009383

9. Donnelly S.E., Vishnyakov V.M., Carter G. et al. The use of cavities for gettering in silicon microelectronic devices. Nuclear Instruments and Methods in Physics Research, 2003. Vol. 206(7). Pp. 422-426.

10. Ogura A. Formation of patterned buried insulating layer in Si substrates by Не+ implantation and annealing in oxidation atmosphere. Applied Physics Letters, 2003. Vol.82(25), Pp.4480-4482. DOI:10.1063/1.1586783

11. Evans J. H. Mechanisms of void coarsening in helium implanted silicon. Nuclear Instruments and Methods in Physics Research, 2002. Vol.196 (1-2), Pp. 125-134.

12. Hasanuzzaman M., Haddara Y. M., Knights A.P. A mathematical model for void evolution in silicon by helium implantation and subsequent annealing process. Journal of Applied Physics, 2012. Vol. 112 . no. 6. Pp. 064302- 064312. DOI: 10.1063/1.4751437


Review

For citations:


Shemardov S.G., Beklemisheva A.V., Alexandrov P.A., Vasiliev A.L., Beklemishev V.N. High-dose implantation of low-energy helium ions. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2025;14(6):553-557. (In Russ.) https://doi.org/10.26583/vestnik.2025.6.10. EDN: RXPWRH

Views: 17


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)