Preview

Вестник НИЯУ МИФИ

Расширенный поиск

Использование средств вычислительной гидродинамики для расчета распространения газоаэрозольных выбросов в условиях сложного рельефа

https://doi.org/10.1134/S2304487X1906004X

Об авторах

М. Мехди
Национальный исследовательский ядерный университет “МИФИ”
Россия

115409

Москва



М. П. Панин
Национальный исследовательский ядерный университет “МИФИ”
Россия

115409

Москва



Список литературы

1. Серия изданий по безопасности № 50-SG-S3. Руководства МАГАТЭ по безопасности. – Вена, 1980.

2. Leelőssy Á., Lagzi I., Kovacs A., Meszaros R. A review of numerical models to predict the atmospheric dispersion of radionuclides. Journal of Environmental Radioactivity. 2018. № 182. P. 20–33.

3. Yoshihide T., Akashi M., Ryuichiro Y., Hiroto K., Tsuyoshi N., Masaru Yoshikawa T. AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. Journal of Wind Engineering and Industrial Aerodynamics 2008. № 96. P. 1749–1761.

4. Gorle C., Beeck J. V., Rambaud P., Tendeloo G. V. CFD modelling of small particle dispersion: The influence of the turbulence kinetic energy in the atmospheric boundary layer. Atmospheric Environment. 2009. № 43. P. 673–681.

5. Ai Z.T., Mak C. M. CFD simulation of flow and dispersion around an isolated building: Effect of inhomogeneous ABL and near-wall treatment. Atmospheric Environment. 2013. № 77. P. 568–578.

6. Ступин А. Б. Влияние неоднородности рельефа на рассеивание выбросов в атмосфере /А. Б. Ступин, В. С. Оверко. – ДоНТУ, 2006. URL: https://scholar.google.no/citations?view_op=view_citation&hl=en&user=GD51G8QAAAAJ&citation_for_view=GD51G8QAAAAJ:W7OEmFMy1HYC.

7. ANSYS Fluent Theory Guide, ANSYS, Inc., 275 Technology Drive Canonsburg, PA 15317, November 2013.

8. Yu Y., Kwok K. C. S., Liu X. P., Zhang Y. Air pollutant dispersion around high-rise buildings under different angles of wind incidence. Journal of Wind Engineering & Industrial Aerodynamics.2017. № 167. P. 51–61.

9. Zhenqing L., Shuyang C., Heping L., Takeshi I. Large-Eddy Simulations of the Flow Over an Isolated Three-Dimensional Hill. Boundary-Layer Meteorology. 2019. № 170. P. 415–441.

10. Takeshi I., Kazuki H., Susumu O. A wind tunnel study of turbulent flow over a three-dimensional steep hill. Journal of Wind Engineering and Industrial Aerodynamics. 1999. № 83. P. 95–107.

11. Ferreira A. D., Silva M. C. G., Viegas D. X., Lopes A. M. G. Wind tunnel simulation of the flow around two dimensional hills. Journal of Wind energy and Industrial Aerodynamics. 1991. № 38. P. 109–122.

12. Kim H. G., Lee C. M., Lim H. C., Kyong N. H. An experimental and numerical study on the flow over two dimensional hills. Journal of Wind energy and Industrial Aerodynamics. 1997. № 66. P. 7–33.

13. Trombetti F., Martano P., Tampieri F. ‘Data Sets for Studies of Flow and Dispersion in Complex Terrain: The “RUSHIL” Wind Tunnel Experiment (Flow Data)’, Technical Report No 4, FISBAT-RT-1991/1.

14. Martinuzzi R., Tropea C. The flow around surface-mounted, prismatic obstacles in a fully developed channel flow. Journal of Fluids Engineering. 1993. № 115. P. 85–92.

15. Tavakol M. M., Yaghoubi M., Masoudi Motlagh M. Air flow aerodynamic on a wall-mounted hemisphere for various turbulent boundary layers. Experimental Thermal and Fluid Science. 2010. № 34. P. 538–553.

16. Juretic F., Hrvoje H., Computational modeling of the neutrally stratified atmospheric boundary layer flow using the standard k–e turbulence model. Journal of Wind Engineering and Industrial Aerodynamics. 2013. № 115. P. 112–120.

17. Richards P. J., Norris S. E. Appropriate boundary conditions for computational wind engineering models revisited. Journal of Wind Engineering and Industrial Aerodynamics. 2011. № 99. P. 257–266.

18. Xing J., Liu Z. Y., Huang P., Feng C. G., Zhou Y., Zhang D. P., Wang F. Experimental and numerical study of the dispersion of carbon dioxide plume. Journal of Hazardous Materials. 2013. № 256. P. 40–48.

19. Kiša M., Jelemenský L. CFD Dispersion Modelling for Emergency Preparedness. Journal of Loss Prevention in the Process Industries. 2009. № 22 (1). P. 97–104.

20. Richards P. J., Hoxey R. P. Appropriate boundary conditions for computational wind engineering models using the kε-model. Journal of Wind Engineering and Industrial Aerodynamics. 1993. № 46. P. 145–153.


Рецензия

Для цитирования:


Мехди М., Панин М.П. Использование средств вычислительной гидродинамики для расчета распространения газоаэрозольных выбросов в условиях сложного рельефа. Вестник НИЯУ МИФИ. 2019;8(6):546-552. https://doi.org/10.1134/S2304487X1906004X

For citation:


Mehdi M., Panin M.P. The Application of Computational Fluid Dynamics to the Diffusion of Gas–Aerosol Emissions in Conditions of Complex Terrain. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2019;8(6):546-552. (In Russ.) https://doi.org/10.1134/S2304487X1906004X

Просмотров: 121


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)