Preview

Вестник НИЯУ МИФИ

Расширенный поиск

Применение мультизадачной модели для практических задач генерации заголовка, определения лемм и ключевых слов

https://doi.org/10.1134/S2304487X20030074

Аннотация

Об авторах

И. А. Молошников
Национальный исследовательский центр “Курчатовский институт”
Россия

123182

Москва



А. В. Грязнов
Национальный исследовательский центр “Курчатовский институт”
Россия

123182

Москва



Д. С. Власов
Национальный исследовательский центр “Курчатовский институт”
Россия

123182

Москва



Р. Б. Рыбка
Национальный исследовательский центр “Курчатовский институт”
Россия

123182

Москва



А. Г. Сбоев
Национальный исследовательский центр “Курчатовский институт”; Национальный исследовательский ядерный университет “МИФИ”
Россия

123182

115409

Москва



Список литературы

1. Korobov M. Morphological Analyzer and Generator for Russian and Ukrainian Languages. Analysis of Images, Social Networks and Texts. 2015. P. 320–332.

2. De Smedt T., Daelemans W. Pattern for Python. Journal of Machine Learning Research. 2012. № 13. P. 2031–2035.

3. Straka M., Straková J. Tokenizing, POS Tagging, Lemmatizing and Parsing UD 2.0 with UDPipe. In Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. 2017.

4. NLTK, NLTK 3.3 release: May 2018. http://www.nltk.org

5. Peters M. E., Neumann M., Iyyer M., Gardner M., Clark C., Lee K., Zettlemoyer L. Deep contextualized word representations. arXiv preprint arXiv:1802.05365. 2018.

6. Devlin J., Chang M. W., Lee K., Toutanova K. BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805. 2018. Oct 11.

7. Liu Y., Lapata M. Text summarization with pretrained encoders. arXiv preprint arXiv:1908.08345. 2019. Aug 22.

8. Liu Y. Fine-tune BERT for extractive summarization. arXiv preprint arXiv:1903.10318. 2019. Mar 25.

9. Chen X., Gao S., Tao C., Song Y., Zhao D., Yan R. Iterative document representation learning towards summarization with polishing. arXiv preprint arXiv:1809.10324. 2018. Sep 27.

10. Stepanov M. A. Generaciya zagolovkov novostnih statei, ispolzuya stemi, lemmi i grammemi. Kompyuternaya lingvistika i intellectual’nie tehnologii (po materialam ezhegodnoi mezhdunarodnoi konferencii “Dialog”). 2019. № 18. Additional vol.

11. Gusev I. Importance of copying mechanism for news headline generation // arXiv preprint arXiv:1904.11475. 2019.

12. Gavrilov D., Kalaidin P., Malykh V. Self-attentive model for headline generation // European Conference on Information Retrieval. 2019. C. 87–93.

13. Sokolov A. M. Phrase-based attentional transformer dlya generacii zagolovkov. Kompyuternaya lingvistika i intellectual’nie tehnologii (po materialam ezhegodnoi mezhdunarodnoi konferencii “Dialog”). 2019. № 18. Additional vol.

14. Dong L., Yang N., Wang W., Wei F., Liu X., Wang Y., Gao J., Zhou M., Hon H. W. Unified language model pre-training for natural language understanding and generation. InAdvances in Neural Information Processing Systems 2019 (P. 13042–13054).

15. Song K., Tan X., Qin T., Lu J., Liu T. Y. Mass: Masked sequence to sequence pre-training for language generation. arXiv preprint arXiv:1905.02450. 2019. May 7.

16. Rose S., Engel D., Cramer N., Cowley W. Automatic keyword extraction from individual documents. Text mining: applications and theory. 2010. P. 1–20.

17. El-Beltagy S. R., Rafea A. KP-miner: Participation in semeval-2. Proceedings of the 5th international workshop on semantic evaluation. 2010. P. 190–193.

18. Campos R., Mangaravite V., Pasquali A., Jorge A., Nunes C., Jatowt A. YAKE! Keyword extraction from single documents using multiple local features. Information Sciences. 2020. № 509. P. 257–89.

19. Gydovskikh D. V., Moloshnikov I. A., Naumov et al. A probabilistically entropic mechanism of topical clusterisation along with thematic annotation for evolution analysis of meaningful social information of internet sources. Lobachevskii Journal of Math. 2017. V. 38. P. 910–913. doi: 10.1134/S1995080217050134

20. Mihalcea R., Tarau P. Textrank: Bringing order into text. Proceedings of the 2004 conference on empirical methods in natural language processing. 2004. P. 404–411.

21. Wan X., Xiao J. CollabRank: towards a collaborative approach to single-document keyphrase extraction. Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008). 2008. P. 969–976.

22. Bougouin A., Boudin F. TopicRank: Topic ranking for automatic keyphrase extraction. 2014. № 55. P. 45–69.

23. Florescu C., Caragea C. Positionrank: An unsupervised approach to keyphrase extraction from scholarly documents. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. 2017. V. 1. P. 1105–1115.

24. Boudin F. Unsupervised keyphrase extraction with multipartite graphs. arXiv preprint arXiv:1803.08721. 2018.

25. Witten I. H., Paynter G. W., Frank E., Gutwin C., Nevill-Manning C. G. Kea: Practical automated keyphrase extraction. IGI global. Design and Usability of Digital Libraries: Case Studies in the Asia Pacific. 2005. P. 129–152.

26. Nguyen T. D., Luong M. T. WINGNUS: Keyphrase extraction utilizing document logical structure. Association for Computational Linguistics. Proceedings of the 5th international workshop on semantic evaluation. 2010. P. 166–169.

27. Turney P. D. Learning algorithms for keyphrase extraction. Information retrieval. 2000. № 2 (4). P. 303–36.

28. Page L., Brin S., Motwani R., Winograd T. The pagerank citation ranking: Bringing order to the web. Stanford InfoLab, 1999.

29. Moloshnikov I. A., Gryaznov A. V., Vlasov D. S., Sboev A. G. Vibor effectivnogo neirosetevogo metoda formirovaniya zagolovkov. NIYaU MIFI. VI Mezhdunarodnaya konferenciya “Lazernie, pazmennie issledovaniya i tehnologii-LaPlaz-2020”, sbornik nauchnih trudov. 2020. V. 1. P. 80–81.

30. Kanerva J., Ginter F., Miekka N., Leino A., Salakoski T. Turku neural parser pipeline: An end-to-end system for the conll 2018 shared task. Proceedings of the CoNLL 2018 Shared Task: Multilingual parsing from raw text to universal dependencies. 2018. P. 133–142.

31. Lin C. Y., Hovy E. Automatic evaluation of summaries using n-gram co-occurrence statistics. Proceedings of the 2003 Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics. 2003. P. 150–157.

32. Headline Generation Shared Task on Dialogue'2019, http://www.dialog-21.ru/media/4661/cameraready-submission-157.pdf


Рецензия

Для цитирования:


Молошников И.А., Грязнов А.В., Власов Д.С., Рыбка Р.Б., Сбоев А.Г. Применение мультизадачной модели для практических задач генерации заголовка, определения лемм и ключевых слов. Вестник НИЯУ МИФИ. 2020;9(3):236-244. https://doi.org/10.1134/S2304487X20030074

For citation:


Moloshnikov I.A., Gryanov A.V., Vlasov D.S., Rybka R.B., Sboev A.G. Application of a Multitasking Model for Practical Tasks of Heading Generation, Definition of Lemmas and Keywords. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2020;9(3):236-244. (In Russ.) https://doi.org/10.1134/S2304487X20030074

Просмотров: 116


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)